
Solution for Test 3, Fall 2010

1. Explain/justify the recursive formula for matrix-chain multiply. The value m[i,j] is the
minimum cost for multiplying matrices Ai-1 ... Aj, with matrix dimensions p0 ... pn.

• First case: if there is only one matrix in the list of matrices to multiply, then the cost is
zero.

• Second case: if we have two or more matrices to multiply, try all possible places to put
the top-level parenthesis, and pick the minimum cost. The variable k indicates where to
put the top-level parenthesis. The total cost for a fixed value of k is computed as the sum
of three components: (1) the cheapest cost for multiplying the matrices before the top-
level parenthesis (this is notated as m[i,k]), (2) the cheapest cost for multiplying the
matrices following the top-level parenthesis (this is notated as m[k,j]) and (3) the cost of
doing the matrix multiply at the top-level parenthesis (notated as pi pk pj.

2. Explain/justify the recursive formula for longest common subsequence of sequences X and Y.
Xi represents the first i items in X, and xi is the ith item in X. The value c[i,j] is the length of the
longest common subsequence of Xi and Yj.

• First case, i=0 or j=0 means that one (or both) of the sequences Xi and Yj is empty, so
therefore a common subsequence must have length zero (there cannot be any characters
in common with a sequence that is empty)

• Second case: the last character of Xi matches the last character of Yj; that contributes 1 to
the length of the longest common subsequence of Xi and Yj. Add to that the length of the
longest common subsequence of Xi-1 and Yj-1, which is written as c[i-1,j-1].

• Third case: the last character of Xi does not match the last character of Yj. In this case,
we have to pick the beset of two options: throw away the last character of X and match
the remainder (find LCS of Xi-1 and Yj, which is written as c[i-1,j]), or throw away the
last character of Y and match the remainder (find LCS of Xi and Yj-1, which is written as
c[i,j-1]).

For more details, see pages 392-393 of the text.

 3. Here is input to matrix-chain multiply: p0 ... p4 = 10, 100, 5, 50, 20. Fill in the top right entry.

 0 1 2 3 4
0 0 5000 7500 11000
1 0 25000 15000
2 0 5000
3 0
4

table[0,4] represents the multiplication of A1A2A3A4. Compute the cost as the minimum of these
three options:
(A1)(A2A3A4) table[0,1]+table[1,4]+p0p1p4 = 0+15000+10*100*20 = 20,000
(A1A2)(A3A4) table[0,2]+table[2,4]+p0p2p4 = 5000+5000+10*5*20 = 11,000
(A1A2A3)(A4) table[0,3]+table[3,4]+p0p3p4 = 7500+0+10*50*20 = 17,500
The second option is the cheapest, so the answer is 11,000

4. This is Fibonacci code with memoization.
main {
 int table[MAX]; // Table[i] stores the answer for Fib(i).
 // MAX is an integer > 100.

 // Fill the table with -1 values to indicate that the entries are empty.
 for (int i=0; i<MAX; i++)
 table[i] = -1;

 call Fib(100); // compute the 100th Fibonacci number
 }

// Compute the value of the nth Fibonacci number
Fib(int n) {
 int answer;
 // If the answer is in “table”, then return that answer.
 if (table[i]!=-1) return(table[i]);

 // The answer isn’t in “table”. Compute the answer and the store
 // it in “table”.
 if (n < 2)
 answer=n;
 else
 answer = Fib(n-1) + Fib(n-2);

 table[i] = answer;
 return(answer);
 }

5. This is a recursive formula for cost(i,j): the cost of traveling from location i,j to the bottom
row:

 cost(i,j) = C[i,j] if i=N
 = C[i, j] + min(cost(i+1, j), cost(i+1, j+1)) if i<N

The above formula uses i=N as the boundary condition. It’s just as good to use i>N as the
boundary condition, writing “cost(i,j) = 0 if i>N”.

The code is as follows:
// Given array C: C[i,j] is the cost of visiting location [i, j].
main() {
 Cost(1,1,C); // find min cost of path from row 1, col 1 to row N
 }

// The function “Cost” finds the cost of the cheapest path from
// row i, col j down to row N.
int Cost(i, j, C) {
 // Here, i==N is used as the escape clause. Equally good is to
 // use i>N as escape clause and return 0.
 if (i == N)
 return (C[i,j]);

 // Try continuing the path straight down, or continuing
 // it diagonally down, and pick the cheaper one.
 return (C[i,j] + min(Cost(i+1,j,C), Cost(i+1,j+1,C)));
 }

Working backwards
The code above starts at 1,1 and works downwards. An alternative is to go the other way,
starting at the bottom and computing the path toward the top. That is trickier to code correctly
because the path can end anywhere on the bottom row, so all locations on the bottom row have to
be tried in order to find the minimum cost. Also it is necessary to test whether we are on the
main diagonal, or in the first column, to avoid going out of bounds. Below is code for
computing the cost this way.

// Given array C: C[i,j] is the cost of visiting location [i, j].
main() {
 int cheapest = MAXINT; // initialize to a huge value
 for (int j=1; j<=N; j++) {
 int temp = RCost(N, j, C);
 if (temp<cheapest)
 cheapest = temp;
 }
 // The answer is given by the value in “cheapest”
 }

// The function “RCost” (“reverse cost”) finds the cost of the cheapest path
// from row i, col j up to row 1.
int RCost(i, j, C) {

 if (i<j) error in program // this should never happen

 if (i==1)
 return (C[1,1]);

 if (i==j) // we are on the main diagonal, so we have to take
 // a diagonal step, we cannot go upward.
 return(C[i,j]+RCost(i-1,j-1,C));

 if (j==1) // we are in the leftmost column, so we have to take
 // an upward step, we cannot go diagonally.
 return(C[i,j]+RCost(i-1,j,C));

 // Pick the cheapter alternative of going up or going diagonally.
 return (C[i,j] + min(RCost(i-1,j,C), RCost(i-1,j-1,C)));
 }

